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Abstract—3D Gaussian Splatting (3DGS) enables photorealis-
tic, real-time rendering, yet its native representation imposes sig-
nificant storage and transmission overhead, hindering widespread
deployment. Most existing approaches focus on reducing data
volume or improving the efficiency of lossy coding. However,
they overlook the high data entropy caused by inherent repre-
sentation ambiguity, where multiple geometric attribute values
can define the same geometry. To address this, we introduce a
lightweight, plug-and-play preprocessing method that lowers raw
data entropy by canonicalizing scale and quaternion attributes.
Specifically, our method first resolves geometric representation
ambiguity via a deterministic regularization rule that enforces a
unique representation; reduces dimensionality by converting 4D
quaternions to minimal 3D Rodrigues parameters; and addresses
numerical redundancy by clamping perceptually insignificant
scale values. Our method is a generic, plug-and-play prepro-
cessing module, fully orthogonal to existing 3DGS compression
schemes, and effectively boosts their coding efficiency. When
combined with a baseline compression pipeline, it yields an
average BD-Rate reduction of 15.81% compared to the same
pipeline without our preprocessing.

Index Terms—3D Gaussian Splatting, Compression, Prepro-
cessing.

I. INTRODUCTION

3D Gaussian Splatting (3DGS) has established a new
benchmark in novel view synthesis, achieving photorealistic
rendering at real-time rates [1]. This performance establishes
3DGS as a foundational technology for immersive applications
such as virtual and augmented reality (VR/AR) and digital
twins, but the high storage and bandwidth requirements of
its native representation pose a critical challenge for practi-
cal deployment. Consequently, the development of effective
compression and coding methods is essential for its practical
deployment. [2]—[5]

Extensive research has been devoted to developing in-
trinsically compact representations of 3D scenes. A primary
strategy focuses on reducing the raw data volume by altering
the scene’s fundamental composition. This is achieved most
directly by reducing the number of primitives, either through
post-training pruning or merging [6]—[8], by refining adaptive
density control within the training loop [9], [10], or by em-
ploying hybrid implicit models that generate a full scene from
a small set of features or anchors [11]-[14]. Complementing
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Fig. 1: Our training-free Geometric Canonicalization pipeline.
It first regularizes the data distributions of scale and quaternion
attributes, reducing their dynamic range to enhance compress-
ibility.

these efforts, another line of work simplifies the attributes
of each primitive to reduce their footprint. This includes
reducing the dimensionality of 3D Gaussian attributes, for
instance by converting quaternions to Euler angles [15], or
simplifying appearance models by reducing the order of
Spherical Harmonics [16]. Another approach is learning a
compressed representation to replace raw attributes through
vector quantization or compact feature mappings [17]-[19].
Other methods focus on optimizing the statistical properties of
Gaussian splatting data by integrating entropy-aware training
objectives. For example, entropy constraints are imposed on
the distribution of quaternion attributes during training [20], or
on feature planes when training a tri-plane representation [19].

While these strategies are effective, they either require
costly retraining or overlook a fundamental source of entropy:
inherent redundancies within the geometric parameterization
of the standard Gaussian primitive. Chief among these is
the representation ambiguity stemming from the rotational
symmetry of ellipsoids, which allows a single Gaussian to be
described by multiple equivalent combinations of scale and
rotation values. This ambiguity, compounded by other redun-
dancies, leads to disordered data distributions that challenge
effective compression.

This paper introduces Geometric Canonicalization, a
lightweight, training-free method that systematically elimi-
nates these inherent geometric representation redundancies.
By applying a deterministic transformation to any pre-trained
model, as shown in Fig. 1, our method produces a canonical
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Fig. 2: The illustration of our three-stage canonicalization pipeline. Our method converts raw geometric attributes into a
compact canonical form through three steps: resolving many-to-one ambiguities for unique Gaussian representation, reducing
4D quaternions to minimal 3D vectors, and clamping small scale values below a perceptual threshold.

representation that is significantly more compressible with-
out altering the rendered scene. Specifically, our work 1)
resolves representation ambiguity through a deterministic
regularization rule, creating structured data distributions;
2) reduces dimensionality by converting 4D quaternions
to minimal 3D Rodrigues parameters; and 3) addresses
numerical redundancy by clamping imperceptible scale
values. As a plug-and-play module, our work enhances the
performance of existing and future codecs without costly
retraining.

II. PROPOSED METHOD
A. Preliminary

3D Gaussian Splatting. A 3DGS scene is represented by
a set of anisotropic 3D Gaussians, typically visualized as
oriented ellipsoids. Each primitive is parameterized by its
color, defined by opacity («) and Spherical Harmonics (SH)
coefficients, and its geometry. The geometry is specified by
a position u, a scaling vector s € R3, and a unit quaternion
q € S?. The latter two attributes jointly define the ellipsoid’s
shape and orientation via a 3D covariance matrix 3:

> = RSSTR” ()

where R (derived from q) is a rotation matrix defining the
orientation of the ellipsoid’s principal axes, and S = diag(s)
is a diagonal matrix defining the scaling along these axes.

B. Geometric Representation Ambiguity

Geometric representation ambiguity arises because the same
rendered Gaussian can be described by multiple equivalent
combinations of a scale vector s and a rotation quaternion q.
This issue stems from the physical symmetry of an ellipsoid;
its appearance is invariant to certain transformations of its local
coordinate system, specifically axis permutations and flips.
Formally, for any given Gaussian, the set £ of all equivalent
parameter pairs (s, q') is defined by transformations that leave
the covariance matrix unchanged:

£={,d) | R'S'(S)"(R)" =RSS"R"} (2

Any such transformation on the local axes can be represented
by an orthogonal matrix T, yielding a new rotation R’ = RT.
In the quaternion domain, this corresponds to the product q' =
q ® t, where t is the quaternion for the transformation T.
If the transformation swaps axes, the scale vector s must be
permuted accordingly to produce s’.

Given an initial representation (s, q), where s = (s, 8y, S.)
and q = (w,x,y, z), the full set of equivalent pairs can be
generated:

a) Axis Flips: When only flipping two local axes, the
scale vector remains unchanged (s’ = s). These three trans-
formations yield the following equivalent quaternions:

o Flip ¥, Z axes: = (—z,w, 2z, —y)

e Flip X, Z axes: ' = (—y,—z,w, x)

o Flip X, Y axes: ' = (—z,y,—x,w)

b) Pairwise Axis Swaps: These transformations corre-
spond to swapping two local axes and flipping the remaining
one; the scale values are permuted accordingly.

o Fors' = (sy,85,5.):q = %(—m—y,w—aw—i—z,x—y)
= %(—y—z,y—z,w—x,w—i—x)
o Fors' = (s.,sy,5.):d = %(fxfz,w+y,zfx,wfy)

c) Cyclic Axis Permutations: These transformations cor-
respond to a cyclic permutation of all three axes.

o Fors' = (sy,s.,8,):d =s(w—z—y—z,w+z+y—

zyzw—x+y+z,wtr—y+z)

o For s’ = (s;,82,8y): d = %(w—l—x—i—y—l—z,—w—&—x—

y+z,—~wt+r+y—z,—w—x+y+2)

In total, there are 6 unique scale permutations. Each combines
with 4 orientation-preserving symmetries (including identity),
yielding 6 x 4 = 24 unique pairs of (s’,R’). Accounting for
the twofold sign ambiguity of quaternions, where both q’ and
—q' represent the same rotation [21], the full set £ has a
cardinality of 48. This high degree of redundancy creates a
disordered data distribution detrimental to compression.

o Fors' = (s4,5.,84): q

C. The Geometric Canonicalization Method

To resolve the inherent geometric representation redundan-
cies, we introduce a three-stage method that transforms the raw



attributes (s, q) into a canonical representation that is compact
and perceptually optimized, as illustrated in Fig. 2.

1) Ambiguity Elimination via Regularization: This first
stage regularizes the parameter space by establishing a unique
representation for each Gaussian. We select a regularized pair
(Sreg, dreg) from the set of 48 equivalent representations &
using a two-level selection rule. First, we enforce a descending
order on the scale components:

E={Ed)eclls,>s,>5.} 3)

Second, from the resulting subset, we select the representation
that maximizes the quaternion’s scalar component:

(Sreg, Areg) = argmax {w'} 4)
(s"q' )€€

This regularization process yields low-entropy distributions
ideal for compression by systematically reducing the value
range of both scale and rotation attributes, enhancing their
suitability for fixed-point quantization. Sorting the scales
(st, > s; > ') decomposes the original data into three
distinct, more concentrated component distributions. Con-
currently, maximizing the quaternion’s scalar component w’
collapses the rotation distribution into a sharp peak near the
identity. Both transformations constrict the dynamic range of
the attributes, which not only improves quantization precision
but also enables attribute-aware coding strategies, such as
allocating fewer bits to the smallest scale component.

2) Conversion to Rodrigues Parameters: Quaternion Rep-
resentation. A unit quaternion q = (w,z,y,z), where
w? + 22 + y? + 22 = 1, provides a compact, singularity-
free representation for 3D rotations. For a rotation of angle
around a unit axis n = (ng, n,,n.), the components are given
by:

0
(IC,y,Z) = (nmvnyanz)Sin(f) (5)

w = 008(5)’ 5

To eliminate dimensional redundancy, we convert this 4D
vector into a minimal 3D vector using Rodrigues Parameters
(RP) [22]:

Yreg

Vo = ntan(2) = <“ , Hreg Zreg > ©)
2 Wreg Wreg Wreg

The non-linear nature of this conversion (proportional to
tan(0/2)) beneficially transforms the peaked distribution from
the previous stage into a more uniform one. This structure bet-
ter utilizes the dynamic range of a quantizer, thereby reducing
average quantization error. Crucially, the prior maximization
of w4 robustly avoids the singularity at w,.., = 0, ensuring
the conversion is always numerically stable.

3) Rendering-Quality-Guided Scale Clamping: The final
stage targets numerical redundancy in the scale values. In the
3DGS rendering pipeline, a Gaussian’s influence depends on
its projected 2D footprint. At typical viewing distances en-
countered in interactive applications, Gaussians with extremely
small scales have a negligible footprint and are effectively
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Fig. 3: Relationship between rendered view PSNR and scale
minimum clamping threshold.

invisible. We eliminate this redundancy by clamping the
regularized log-scale values to a minimum threshold, 7:

log(s.) = max(log(Sreq), T) @)

Based on our empirical evaluation (Fig. 3), we select 7 =
—8.0. This operation truncates the distribution’s tail, simulta-
neously reducing entropy and constricting its dynamic range,
which allows a quantizer to allocate its full precision to the
perceptually relevant range of values.

The entire three-stage process defines a deterministic map-
ping, termed the Geometric Canonicalization operator C:

C : (S7q) = (SC7V’I'I)) (8)

This resulting pair (s., v,p) constitutes our unique canonical
representation.

III. EXPERIMENTAL RESULTS
A. Experimental Setup

Anchor. To benchmark our method, we adopt the GSCodec
Studio [20] as the anchor, which is a video-based approach:
it first quantizes Gaussian attributes with a uniform fixed-
point quantizer, then maps them onto 2D grids to create
pseudo-images, and compressed with a standard video codec
(e.g., HEVC). This architecture enables efficient decoding
on consumer devices via widely supported hardware codecs.
Our method is integrated as a training-free, plug-and-play
preprocessing module that operates on Gaussian geometric
attributes before quantization.

Dataset and Evaluation. We conduct experiments on the
first frame of three dynamic sequences from the MPEG GSC
dataset: Bartender, Breakfast, and Cinema [23]. We measure
compression gains using the Bjgntegaard Delta Rate (BD-
Rate) [24], calculating the average bitrate savings for the same
PSNR.

B. Objective Results

As detailed in Table I for the Bartender sequence, our
method consistently achieves higher rendering quality (PSNR)
while simultaneously reducing file size compared to the
anchor. This efficiency translates into significant BD-Rate
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Fig. 4: Subjective comparison under high compression. Our method enhances the compression robustness of geometric attributes,
effectively mitigating the severe geometric distortion seen in the baseline under high compression.

reductions across all test scenes, with gains of -15.57% on
Bartender, -17.14% on Breakfast, and -14.71% on Cinema,
culminating in an average saving of -15.81%. These consistent
gains validate the successful removal of geometric attribute
redundancy.

TABLE I: Quantitative comparison of compression efficiency
on the Bartender dataset.

Method Metric RPO RP1 RP2 RP3
Anchor Size (MB)  23.78  12.30 8.69 597
PSNR (dB) 34.84 33.67 3221 30.09
Ours Size (MB) 22.83 1145 8.00 5.44
PSNR (dB) 3490 33.82 32.68 31.03

Ablation Study. To systematically evaluate the contribu-
tion of each component, we conducted an ablation study
in which we progressively activated every module of our
method. The rate-distortion (RD) curves in Fig. 5 validate
that each stage provides a distinct and cumulative benefit,
aligning with our theoretical analysis in Sec. II-C. The
initial regularization (+reg) yields a notable quality improve-
ment by concentrating the attribute distributions. Adding the
conversion to Rodrigues Parameters (+reg+RP) provides a
clear bitrate reduction due to dimensionality reduction. Fi-
nally, scale clamping (+reg+RP+clamp) further improves RD
performance, especially in low-bitrate regimes, by focusing
quantization precision on the most perceptually relevant scales.

C. Subjective Results

Fig. 4 provides a qualitative comparison at similar bitrates.
The anchor exhibits noticeable deformation artifacts, particu-
larly along object edges, which become more pronounced at
low bitrates. In contrast, our method delivers superior visual
quality at a comparable bitrate. Its canonicalized representation
is more robust to quantization, significantly mitigating such
artifacts and preserving geometric fidelity.
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Fig. 5: Ablation study. The curves show the cumulative
rate-distortion improvement as each stage of our method is
progressively added to the anchor.

IV. CONCLUSION

This paper introduces Geometric Canonicalization, a
training-free method that eliminates inherent geometric re-
dundancies in 3DGS to increase the data’s compressibility.
Our method first resolves representation ambiguity, and sub-
sequently addresses dimensional and numerical redundancies.
This process transforms raw Gaussian attributes into a canon-
ical representation that is significantly more robust for com-
pression. Experimental results validate our approach, showing
our lightweight preprocessing step achieves an average BD-
Rate saving of -15.81% over the baseline scheme. As a prac-
tical, plug-and-play module, our method offers a foundational
optimization for efficient 3D Gaussian splat coding.
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