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Abstract—3D Gaussian Splatting (3DGS) enables real-time,
high-fidelity rendering, but its large data volume poses challenges
for storage and transmission. Compressing 3DGS with video
codecs is promising, yet its effectiveness critically depends on
the 3D-to-2D mapping. Existing approaches face a trade-off:
simple scans are fast but yield poor rate–distortion (RD) perfor-
mance, while optimization-based methods improve RD at high
computational cost. We propose a Dual-Hilbert scan algorithm
that first sorts Gaussians along a 3D Hilbert curve to preserve
spatial locality, then maps them onto 2D grids via a 2D Hilbert
curve, producing spatially coherent, block-like layouts suitable
for video compression. A parallel GPU implementation accel-
erates Hilbert code generation, making the approach practical
for large-scale 3DGS data. Experiments demonstrate that our
method achieves RD performance comparable to state-of-the-
art PLAS while being over 500× faster, effectively breaking the
performance–complexity trade-off and enabling efficient, high-
quality video-based 3DGS compression.

Index Terms—Gaussian Splatting, Compression, Video Coding,
Space-Filling Curves, Hilbert Curve.

I. INTRODUCTION

3D Gaussian Splatting (3DGS) [1] has emerged as a revo-
lutionary technique, enabling photorealistic rendering in real
time. However, this high fidelity comes at the cost of a
substantial data footprint, with typical models reaching several
gigabytes. This massive storage requirement presents a signif-
icant barrier to the widespread application and deployment
of 3DGS, particularly in streaming and mobile contexts. As
3DGS gains traction as a potential universal representation
format, Gaussian Splatting Compression (GSC) has become a
focal point of research in both academia and industry [2]–[4].

Among the various strategies, leveraging mature 2D video
codecs (e.g., H.265/HEVC [5]) is particularly promising for
GSC [6]–[10]. This video-based paradigm is also under active
exploration by standardization bodies, notably the Moving
Picture Expert Group (MPEG) within its GSC activity [11]–
[13]. The approach is compelling as it harnesses decades of
innovation in 2D data compression. Its effectiveness, however,
critically depends on the challenge of mapping unordered 3D
Gaussian primitives onto a 2D grid that a video encoder can
process efficiently.

Current 3D-to-2D mapping methods for GSC present a stark
trade-off between computational complexity and compression
performance. On the one hand, low-complexity approaches
such as raster or Morton scan [8], [12] are computationally
efficient. However, they produce disorganized 2D representa-
tions with sharp discontinuities, which fundamentally limit the

efficacy of video codecs. On the other hand, advanced methods
like Parallel Linear Assignment Sorting (PLAS) [6] employ
iterative optimization to arrange Gaussians by similarity. While
this approach yields superior spatial correlation and thus rate-
distortion (RD) performance, the iterative process incurs a sig-
nificant computational overhead. This high complexity makes
it impractical for lightweight applications where encoding
speed is a critical constraint [14].

To resolve this trade-off, our work introduces a solution that
achieves high RD efficiency at a speed comparable to simple
scans. Leveraging the locality-preserving Hilbert curve, well-
suited to the strong spatial correlation of 3DGS attributes,
our approach overcomes two key challenges: the high cost
of Hilbert code generation and the limitations of a simple
3D-to-1D sort for constructing a spatially coherent 2D grid.
We propose a Dual-Hilbert scan algorithm to preserve locality
in 2D and a fast, parallel GPU implementation to make it
efficient. Our main contributions are:

• We analyze the spatial correlation in 3DGS data, pro-
viding a theoretical foundation for using the locality-
preserving Hilbert curve.

• We propose a Dual-Hilbert scan that sorts Gaussians via
a 3D curve and maps them onto 2D grids using a 2D
curve, yielding spatially coherent block-like layouts.

• We develop a fast, parallel GPU algorithm for Hilbert
code generation, making our scan process highly efficient.

II. RELATED WORK

A. Gaussian Splatting Compression
Recent research on GSC [2], [3] has evolved along two main

directions. The first, post-compression, compresses pre-trained
vanilla 3DGS models [6], [7], [15], [16] while maintaining
compatibility with standard 3DGS renderers. The second,
joint optimization, redesigns the representation together with
its compression scheme [17]–[20], reaching state-of-the-art
rate–distortion performance at the cost of more complex
decoders or specialized rendering pipelines.

This division is reflected in the MPEG GSC standardization
activity. The activity consists of two tracks: the Inria-track (I-
track), which focuses on post-compression, and the Alternate-
track (A-track), which allows for joint optimization [13].
Within the I-track, current studies investigate both geometry-
based [21], [22] and video-based [11], [12] approaches. Our
work belongs to the video-based I-track, where efficient 3D-
to-2D mapping remains a key and actively studied challenge.



B. 3D-to-2D Mapping

Mapping high-dimensional data onto a 2D grid is common
in 3D compression. Surface parameterization, such as mesh
UV mapping [23], flattens 3D surfaces into 2D textures, while
projection-based schemes like MPEG’s V-PCC [24] project
dense point clouds onto planes. These approaches, however,
target bounded surfaces and are ill-suited for the sparse,
unbounded, volumetric nature of 3DGS.

Consequently, GSC mapping focuses on scan ordering.
Simple fixed patterns such as Morton curves [8], [12] are
computationally efficient but fail to preserve 3D spatial lo-
cality, resulting in incoherent 2D layouts that limit video
codec performance. PLAS [6] improves upon classic grid-
sorting methods (SOM [25], LAS [26]) with GPU-parallelized
assignment, scaling to millions of points. Yet its iterative
optimization remains a bottleneck, making it too slow for
scenarios that require rapid encoding. This highlights the need
for a mapping method that achieves both high compression
efficiency and fast execution.

III. PROPOSED METHOD

A. Overview

To map sparse, irregular 3DGS data into dense, regular 2D
video frames, we propose an efficient mapping pipeline based
on Dual-Hilbert scan. As illustrated in Fig. 2, our method first
sorts Gaussians along a 3D Hilbert curve, then maps them onto
2D grids via a 2D Hilbert curve. The key idea is to maintain
the spatial coherence throughout the mapping process and
reorganize Gaussian attributes into spatially coherent block-
like 2D patches that are well suited for the predictive and
transform coding mechanisms of modern video codecs.

B. Motivation: Spatial Correlation in 3DGS Data

Our approach builds on the observation that 3DGS data
exhibit strong spatial correlation. To verify this, we conducted
an empirical analysis by sorting the Gaussians of the MPEG-
GSC Cinema sequence [27] along a 3D Hilbert curve and
computing the autocorrelation of their standardized attribute
vectors at varying lags in the resulting 1D order. As shown
in Fig. 1, the autocorrelation remains high at small lags and
decays rapidly with increasing distance, confirming the strong
spatial correlation inherent in 3DGS data. Consequently, the
Hilbert curve scan effectively groups similar Gaussians, pro-
ducing a structured data stream that is well-suited for efficient
video compression.

C. The Dual-Hilbert scan

Prior work [28] has demonstrated that for 3D data, a
Hilbert curve preserves spatial correlation more effectively
than Morton or Gray-coded curves, leading to gains in point
cloud attribute coding. This established the benefit of a 3D-to-
1D Hilbert sort. However, for video-based GSC, this is only
a partial solution, as a naive rasterization of the 1D sequence
onto a 2D grid reintroduces discontinuities that harm video
codec performance.
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Fig. 1: Spatial correlation of 3DGS attributes. The strong
correlation observed at small lags (k < 100) along the Hilbert-
sorted sequence validates the high spatial locality of 3DGS
data and motivates the use of locality-preserving scans for
efficient compression.

Our core contribution is a complete two-stage locality-
preserving mapping that resolves this issue. Our algorithm
first linearizes the 3DGS data into a 1D 3DGS sequence
and subsequently folds this sequence onto 2D 3DGS grids,
with each stage employing a Hilbert curve to maintain spatial
coherence. Let the initial unordered set of N Gaussians be
denoted by G = {Gi}Ni=1.

1) Stage 1: 3D Hilbert Sorting (3D → 1D): This stage
transforms the unordered 3D set G into a 1D sequence S
where neighboring elements correspond to Gaussians that were
physically close in 3D space. The process involves three steps:

1) Quantization: The 3D position pi ∈ R3 of each Gaus-
sian Gi is normalized and quantized to a fixed bit-depth
p, yielding an integer coordinate vector p′

i ∈ {0, . . . , 2p−
1}3.

2) Hilbert Code Generation: We compute a unique 1D
Hilbert index, or code, hi for each quantized position p′

i

using our fast GPU-based function: hi = H3D(p′
i).

3) Sorting: The entire set of Gaussians G is sorted based
on the ascending order of their Hilbert codes {hi}.
This produces a globally sorted 1D sequence S =
(Gπ(1), Gπ(2), . . . , Gπ(N)), where π is the sorting per-
mutation derived from {hi}.

This process ensures that Gaussians clustered in 3D space
are now adjacent in the linearized sequence S, establishing
a strong 1D locality.

2) Stage 2: 2D Hilbert Mapping (1D → 2D): The critical
second stage addresses the challenge of arranging the sorted
1D sequence S onto a 2D grid M without degrading the
locality achieved in Stage 1. A naive raster scan would create
artificial boundaries at the end of each row, separating adjacent
elements from the 1D sequence (e.g., Gπ(k) and Gπ(k+1)) and
making them spatially distant on the 2D grid.



Fig. 2: Overview of our Dual-Hilbert scanning pipeline. (1) An unordered set of 3D Gaussians is sorted into a 1D sequence
using a 3D Hilbert curve, preserving 3D spatial locality. (2) The attributes of this sequence are then mapped onto 2D grids
using a 2D Hilbert curve, creating spatially coherent patches that are highly amenable to video compression.

To prevent this, our key innovation is to employ a second
Hilbert curve to define the filling path on the 2D grid. Instead
of a raster scan, we map the j-th element of the sequence S to
the grid coordinate (u, v) that corresponds to the j-th position
on a 2D Hilbert curve path. This mapping can be expressed
as:

M(H−1
2D(j)) = Gπ(j), for j = 0, . . . , N − 1 (1)

where H−1
2D(j) is the inverse Hilbert map that provides the

2D coordinate for the j-th point on the curve. This mapping
process ensures the 1D locality is maximally preserved in the
2D domain, resulting in the formation of compact, spatially
coherent blocks that are highly amenable to the predictive
coding schemes used in modern video compression.

D. Fast GPU-Accelerated Hilbert Code Generation

The practical feasibility of our Dual-Hilbert scan hinges
on efficient code generation. Traditional recursive Hilbert
algorithms are inherently slow and ill-suited for parallel ar-
chitectures. This has been a major barrier to their widespread
adoption for large-scale data.

We address this critical bottleneck by developing a fully
vectorized, iterative algorithm, inspired by [29]. The key
insight is resolving inherent serial dependencies in the core
logic by manually unrolling the inner dimensional loop (Al-
gorithm 1). This dependency-aware vectorization enables mas-
sive parallelism on the GPU, allowing us to process hundreds
of thousands of points concurrently. As a result, the entire
Hilbert code generation process, for both 3D and 2D curves, is
reduced to a few milliseconds, making our mapping approach
fast enough for practical, near real-time applications.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets and Metrics: We evaluate our method on the
first frame of three sequences from the MPEG GSC test
set [27]: Bartender, Breakfast, and Cinema. The rendered im-
age quality is assessed against the corresponding ground-truth
images. RD performance is reported using the Bjøntegaard
Delta Rate (BD-Rate) [30], which quantifies the average bitrate
savings relative to a reference anchor.

Algorithm 1 Vectorized 3D Hilbert Code Generation

1: procedure VECTORIZEDHILBERTCODE(Coords, p)
2: Input: Coords: Tensor of shape (N, 3), p: Order.
3: Output: D: Tensor of shape (N, ) with Hilbert codes.
4: X,Y, Z ← Coords[:, 0], Coords[:, 1], Coords[:, 2]

▷ Key: Dependency-Aware Vectorization
5: m← 1≪ (p− 1)
6: q ← m
7: while q > 1 do
8: pval ← q − 1

▷ Unroll inner loop to handle serial dependency
9: maskX ← (X & q) ̸= 0

10: X ← where(maskX , X ⊕ pval, X)
11: maskY ← (Y & q) ̸= 0
12: t← (X ⊕ Y ) & pval
13: X ← where(maskY , X ⊕ pval, X ⊕ t)
14: Y ← where(maskY , Y, Y ⊕ t)
15: maskZ ← (Z & q) ̸= 0
16: t← (X ⊕ Z) & pval
17: X ← where(maskZ , X ⊕ pval, X ⊕ t)
18: Z ← where(maskZ , Z, Z ⊕ t)
19: q ← q ≫ 1

▷ Standard Post-processing
20: (X,Y, Z)← GrayDecodeAndFinalize(X,Y, Z,m)
21: D ← InterleaveBits(X,Y, Z, p)
22: return D

2) Baselines: We compare our method against representa-
tive 3D-to-2D mapping baselines:

• Anchor: No spatial sorting; 2D raster scan.
• Morton: 3D Morton sorting followed by a 2D raster scan.
• PLAS [6]: The default optimization-based configuration

that balances performance and speed by excluding SH
AC components from joint sorting.

• PLAS++: A variant of PLAS that includes all attributes
in joint optimization, serving as an upper bound on
performance at higher computational cost.

• Dual-Morton: An ablation of our method that replaces
both the 3D and 2D Hilbert curves with Morton curves.



Fig. 3: Visual comparison of scan orders for mapped positions (low 8-bit precision).

TABLE I: BD-Rate (%) and Sorting Time (s) Comparison Across Datasets. Results are highlighted: 1st , 2nd , 3rd .

Method Bartender Breakfast Cinema

PSNR SSIM LPIPS Time(s) PSNR SSIM LPIPS Time(s) PSNR SSIM LPIPS Time(s)

Morton -18.55 -20.88 -19.34 0.015 -10.89 -15.70 -16.89 0.014 -21.58 -20.10 -19.26 0.013
PLAS -13.93 -16.66 -16.30 12.457 -14.49 -18.48 -18.30 10.576 -16.35 -16.75 -16.04 8.093
PLAS++ -24.89 -26.70 -24.48 30.541 -25.48 -29.33 -27.69 26.079 -28.63 -27.89 -26.62 18.643
Dual-Morton -21.10 -23.28 -20.52 0.039 -8.87 -16.44 -19.63 0.037 -25.73 -24.17 -22.61 0.036
Ours -21.28 -24.59 -22.80 0.062 -11.60 -19.72 -21.50 0.061 -26.66 -25.56 -23.76 0.059

3) Implementation Details: All experiments used standard-
ized settings to isolate scan-order effects. Positions were
quantized to 16 bits and coded losslessly, while SH, opacity,
scale, and rotation were quantized to 10 bits and coded lossily.
The resulting 2D grids were compressed with HEVC (HM
v18.0 [31]) at multiple rate points.

B. Results and Analysis
1) Visual Analysis of Scan Orders: Fig. 3 visualizes the 2D

mappings of Gaussian positions under different scan orders.
The Anchor method appears noisy, while Morton introduces
line-like artifacts. PLAS yields coherent but irregular patches,
and Dual-Morton improves over Morton yet exhibits discontin-
uous Z-shaped patterns. In contrast, our Dual-Hilbert method
produces spatially coherent, block-like structures that align
well with block-based video codec processing, providing an
ideal input for compression.

2) Rate-Distortion Performance: Table I summarizes the
RD results. PLAS++ achieves the highest compression but at a
prohibitive computational cost. Our Dual-Hilbert method con-
sistently ranks second, offering the best performance among
fast, non-iterative approaches. Notably, it also outperforms
its direct counterpart, Dual-Morton, highlighting the superior
locality-preserving properties of the Hilbert curve. Fig. 4
further illustrates its advantage over all except the most
computationally intensive baseline.

3) Complexity Analysis: While PLAS++ achieves strong
RD performance, it requires significant computation (19–31s
per frame). In contrast, our Dual-Hilbert completes the entire
3D–to-2D mapping in only 0.06s, over 500× faster than
PLAS++, with only minor overhead versus Dual-Morton
(0.04s). This efficiency comes from our optimized GPU-
based Hilbert code generation, which outperforms standard
implementations [32] by orders of magnitude (Table II).
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Fig. 4: RD performance on PSNR for the Cinema sequence.

TABLE II: Execution time (s) of 3D Hilbert code generation
(bit-depth=16) for varying point counts. np1/np4/np8 de-
note CPU threads. Results are highlighted: 1st , 2nd .

Method 0.5M 1M 1.5M 2M 2.5M 3M

Hilbert lib np1 12.930 29.240 43.224 56.778 69.762 79.309
Hilbert lib np4 5.285 11.963 17.488 22.791 26.197 31.069
Hilbert lib np8 4.011 8.678 13.105 17.051 19.879 24.406
Ours cpu 0.057 0.081 0.200 0.265 0.348 0.397
Ours gpu 0.008 0.018 0.025 0.033 0.048 0.056

V. CONCLUSION

This paper introduced a Dual-Hilbert scan algorithm for
video-based Gaussian Splatting Compression (GSC). By pre-
serving spatial locality during both 3D-to-1D sorting and 1D-
to-2D mapping, the method produces spatially coherent, block-
like layouts well-suited for video codecs. A parallel GPU
implementation enables practical, large-scale deployment. Ex-
periments show that it achieves RD performance comparable
to PLAS while being over 500× faster, effectively overcoming
the performance–complexity trade-off.
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